

Home Search Collections Journals About Contact us My IOPscience

Lattice dynamics investigation of different transition behaviors of cubic $BaTiO_3$ and $SrTiO_3$ by first-principles calculations

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2008 J. Phys.: Condens. Matter 20 215215 (http://iopscience.iop.org/0953-8984/20/21/215215) View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 129.252.86.83 The article was downloaded on 29/05/2010 at 12:27

Please note that terms and conditions apply.

J. Phys.: Condens. Matter 20 (2008) 215215 (8pp)

Lattice dynamics investigation of different transition behaviors of cubic BaTiO₃ and SrTiO₃ by first-principles calculations

Ying Xie, Hai-tao Yu, Guo-xu Zhang and Hong-gang Fu¹

Laboratory of Physical Chemistry, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China

E-mail: fuhg@vip.sina.com

Received 24 December 2007, in final form 13 March 2008 Published 22 April 2008 Online at stacks.iop.org/JPhysCM/20/215215

Abstract

The lattice dynamics of cubic BaTiO₃ and SrTiO₃ at different crystal lattice volumes were investigated using first-principles density functional theory calculation. The computational results indicate that the Ti–O and A–O (A = Sr or Ba) interactions are responsible for the unstable ferroelectric Γ_{15} and antiferrodistortive R_{25} phonons, respectively. With decreasing volume, the Γ_{15} phonon behaviors of cubic SrTiO₃ and BaTiO₃ show a similar trend and the Ti–O repulsions are significantly enhanced, leading to the disappearance of ferroelectric instability. However, for BaTiO₃ the large ionic radius of Ba with respect to Sr results in a repulsive Ba–O interaction and thereby the disappearance of the R_{25} instability, while the long-range characteristic of Sr–O pair are crucial for the antiferrodistortive instability of cubic SrTiO₃. By analyzing the real-space interatomic force constants, it can be confirmed that the different antiferrodistortive behaviors of the two compounds are dictated by different short-range repulsions of A–O pairs. Moreover, owing to the smaller ionic radius of Sr relative to Ba, the lattice constant of SrTiO₃. The substitution and different crystal volumes make the phase transitions of the two compounds entirely different.

1. Introduction

The perovskites are an extremely important group of ferroelectric materials. Their importance stems not only from technological applications but also from fundamental interest in understanding structural phase transitions. Generally, the perovskites share a common ABO₃ formula and possess a highly symmetrical cubic structure. With decreasing temperature, they display a variety of phase transitions, ranging from non-polar antiferrodistortive (AFD) transition to ferroelectric (FE) and antiferroelectric (AFE) ones in nature [1].

Among the perovskite family, $BaTiO_3$ and $SrTiO_3$ are two widely used ceramics. However, they possess very different phase transition characteristics. $SrTiO_3$ behaves as an incipient ferroelectric and undergoes an AFD transition at 110 K [2], while $BaTiO_3$ exhibits a complicated sequence

of FE phase transitions from cubic symmetry to tetragonal, orthorhombic, and rhombohedral structures [3]. Though much progress has been made in the experimental characterization of the properties of the two compounds during the past several decades [2–6], our knowledge concerning the nature of their phase transitions was rather limited until accurate first-principles density functional theory (DFT) calculations were employed to study the potential energy surfaces [7-10]and temperature-dependent phase diagrams [11–14] of various perovskite oxides in the last decade. These early theoretical works proved to be quite accurate in the prediction of groundstate structure and structural parameters of perovskites [9], giving us confidence to elucidate the microscopic behaviors, i.e. the origin of ferroelectricity [7, 8] and the competition between long-range and short-range (SR) interactions [8]. On the other hand, with advances in density functional perturbation theory (DFPT) [15], it is already feasible to analyze the transition behaviors of some compounds by computing their lattice dynamics by first-principles

¹ Author to whom any correspondence should be addressed.

methods [16-18]. Relying on the linearized augmented plane-wave method, Lasota and co-workers computed the full phonon dispersion relation of cubic SrTiO₃, by which they confirmed the AFD instability observed in a previous experiment [16]. To identify the effect of substitution on the lattice dynamics, Ghosez and co-workers calculated the phonon bands and interatomic force constants (IFCs) of BaTiO₃, PbTiO₃, and PbZrO₃ by the *ab initio* pseudopotential technique and confirmed that the A–O (A = Pb, Ba) and B– O (B = Ti, Zr) longitudinal interactions are responsible for the different transition behaviors of the three compounds [17]. Later, Trautmann and co-workers investigated the influences of dipole and charge fluctuations on the lattice dynamics of SrTiO₃ and BaTiO₃ and confirmed the effect of long-rang and SR interactions on the FE and AFD transition behaviors [18].

Despite many significant theoretical achievements in the past 10 years [7-14, 16-18], some problems still deserve our consideration. According to previous investigations, the hybridization between Ti_{3d} and O_{2p} states is essential for the ferroelectricity of BaTiO₃ and PbTiO₃ [8]. However, for SrTiO₃ the situation is very different. Though the Ti-O covalent bonding in SrTiO₃ can be confirmed to be similar to that in BaTiO₃ and PbTiO₃ [19], it is indubitable that SrTiO₃ undergoes an AFD transition but not a FE one [2]. To investigate the effect of A- and B-site ions on structural instabilities, Ghita and co-workers classified the perovskites into four types by different tolerance factors (t)and pointed out that t < 1 or t = 1 represent A-site driven instability (AFE instability, i.e. PbZrO₃) or a stable cubic phase (i.e. BaZrO₃), respectively, while t > 1 corresponds to B-site (i.e. BaTiO₃) and AB-site (i.e. PbTiO₃) driven ferroelectric instability [20]. Although this classification is quite predictive with regard to what pattern of instability will occur in a given material, how the ionic radius (related to the tolerance factor) affects the structural instabilities is still unclear. To this purpose, further investigations concerning the long-range and SR interaction of different ionic pairs Moreover, as well as the atoms at are very necessary. position A, the lattice constants of BaTiO₃ and SrTiO₃ are also different, and it is hard to identify which factor is responsible for their different transition behaviors. However, previous experimental investigations on PbZrO₃, PbH_fO₃, and BaMnF₄ compounds indicated that the FE instability is suppressed while the AFE instability is enhanced under external pressures [21, 22]. Further theoretical investigations on KNbO₃ [23] and PbZr_xTi_{1-x}O₃ [24] also support the above idea that FE and AFE instabilities show an opposite trend under hydrostatic pressures [23, 24]. Therefore, relevant discussions on the changed interaction of different ionic pairs under pressure are also helpful. With these points in mind, in this study we decided to calculate the Born effective charges (BECs), phonon dispersion relations, and IFCs of cubic BaTiO₃ and SrTiO₃ followed by examination of the effect of substitution and crystal volume change on the lattice dynamics to clarify the possible origin of their different transition behaviors.

2. Computational details

All calculations in present study were performed within the DFT framework [25] implemented in the ABINIT package [26, 27]. The local density approximation pseudopotentials used in calculations were generated by the Troullier–Martins scheme [28] with the FHI98PP code [29]. The exchange–correlation energy was evaluated by the Perdwe–Wang parametrization [30] of the Ceperley–Alder density functional [31]. The conjugate gradient method was employed to minimize the Kohn–Sham energy [32], and the plane-wave cutoff used is 45 Hartree. The sampling over the Brillouin zone was treated by a (4 × 4 × 4) Monkhorst–Pack mesh [33].

The optical dielectric constants, BECs, and dynamical matrices were computed according to the DFPT method [15]. To correctly handle the long-range characteristics of the system, the dipole-dipole (DD) contribution was subtracted from the dynamical matrix in reciprocal space and calculated separately through the Ewald technique [34, 35]. Then, the SR contribution to the IFCs in real space was obtained from the remainder of the dynamical matrix by using the Fourier transform [34, 35]. Therefore, the IFC matrix $C_{\alpha,\beta}(lk, l'k')$, defined as $F_{\alpha}(lk) = -C_{\alpha,\beta}(lk, l'k')\Delta\tau_{\beta}(l'k')$, where $F_{\alpha}(lk)$ and $\Delta \tau_{\beta}(l'k')$ represent the force on atom k in cell l and the displacement of atom k' in cell l', respectively, can On the basis of the IFCs, the phonon be determined. dispersion bands were thus obtained by an elaborate Fourier interpolation. Moreover, to control the errors caused by the Fourier interpolation, a $2 \times 2 \times 2$ centered cubic mesh with a Γ point was used for computing the SR contribution from a dynamical matrix.

For cubic phase $SrTiO_3$ and $BaTiO_3$, the A (A = Sr, Ba), Ti, and O atoms are located at the corner, body center, and face center of the cubic lattice, respectively. In consideration of the substitution effect and different lattice volumes of the two compounds, we decided to calculate their lattice dynamics properties at different lattice constants to clarify the discrepancies of their phase transition behaviors.

3. Results and discussion

3.1. Effect of volume on dielectric properties

The computed optical dielectric constants (ε_{∞}), which are usually overestimated within the LDA scheme [16, 17], are presented in table 1. According to previous predictions, the errors of ε_{∞} in cubic SrTiO₃ and BaTiO₃ are over 14% by comparing the theoretical values (6.63 and 6.75) [16, 17] with the experimental ones (5.83 and 5.40) [36, 37]. The origin of the error is very complex, and it arises at least partly from the lack of polarization dependence of the approximate exchange– correlation functional [38]. However, by selecting suitable parameters the calculation can be improved, as it is noted from table 2 that the optical dielectric constants, lattice constants, and Γ_{15} modes are obviously affected by the pseudopotentials and functionals used. In comparison with the experimental dielectric constants (5.83 and 5.40 for SrTiO₃ and BaTiO₃,

Table 1. Lattice parameters (Å) used in the DFPT calculations, BECs $(Z^*, |e|)$, and optical dielectric constants (ε_{∞}) of cubic SrTiO₃ and BaTiO₃.

		SrTiO ₃	i	BaTiO ₃			
	Present	Present	Ref. [16]	Present	Present	Ref. [17]	
$a_{\rm cell}$	3.90 ^a	4.01	3.92	3.90	4.01 ^a	4.00	
Z* (Ti)	+7.11	+7.15	+7.56	+7.10	+7.14	+7.32	
$Z^*(O_{\parallel})$	-5.62	-5.71	-5.92	-5.62	-5.69	-5.78	
$Z^{*}(A)^{b}$	+2.30	+2.31	+2.55	+2.40	+2.37	+2.74	
$Z^*(O_\perp)$	-1.89	-1.87	-2.12	-1.94	-1.91	-2.14	
ε_{∞}	5.72	5.91	6.63	5.83	5.97	6.75	
Expt. ε^{c}_{∞}	5.83		—		5.40	—	

^a Experimental lattice constants.

^b Atom A represents strontium or barium.

^c The experimental optical dielectric constants of SrTiO₃ and BaTiO₃ were taken from [36] and [37], respectively.

respectively), our results (5.72 and 5.97, FHI-PW92) are quite moderate.

The BECs (Z^*) of cubic SrTiO₃ and BaTiO₃ at experimental lattices (3.90 Å for SrTiO₃ and 4.01 Å for BaTiO₃) were calculated and are also presented in table 1, from which we can see that the amplitudes of $Z^*(Ti)$ (+7.11 for SrTiO₃ and +7.14 for BaTiO₃) and the corresponding $Z^*(O_{\parallel})$ (-5.62 for SrTiO₃ and -5.69 for BaTiO₃) substantially deviate from their nominal values expected in a purely ionic picture, i.e. +4 *e* and -2 *e*, respectively. This effect is indeed very common for the ABO₃ perovskite family [42, 43] and reflects the sensitivity of the covalent characteristics of the Ti– O bond to atomic displacements [17]. In contrast, Z^* (A) (A = Sr, Ba) and the corresponding $Z^*(O_{\perp})$ are very close to their respective ionic charges, implying rather weak covalent characteristics of the Sr–O/Ba–O bonds.

To compare the BEC of $SrTiO_3$ with that of $BaTiO_3$ at the same lattice volume, we performed a computation for $SrTiO_3$ at the experimental lattice of $BaTiO_3$ (4.01 Å), and the results are also presented in table 1. With the substitution of Ba by Sr, however, the BECs of every atom of $SrTiO_3$ are almost identical with those of $BaTiO_3$. This insensitive change indicates that at the same lattice constant the longrange interaction of cubic $SrTiO_3$ is very similar to that of cubic BaTiO₃, which can also be confirmed in the following sections. Moreover, the compression of lattice volume only slightly affects the BECs of $SrTiO_3$ —the calculated values differ by 0.10 *e* at most. Therefore it is expected that the long-range interaction is not responsible for the different phase transition behaviors of the two crystals.

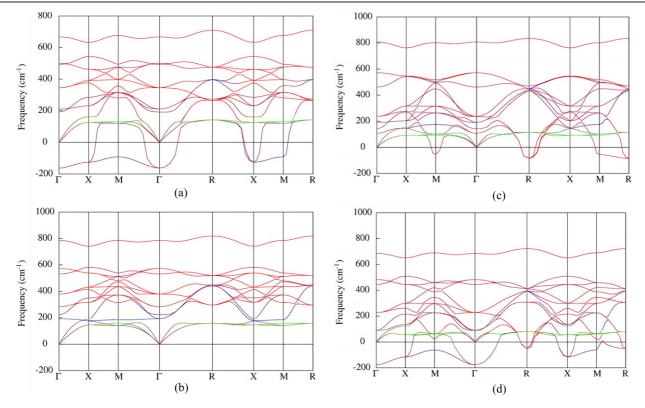
3.2. Effect of volume on the vibrational properties

To investigate the effect of volume on vibrational properties, we computed the phonon dispersion relations of cubic $SrTiO_3$ and $BaTiO_3$ at different crystal volumes, and the results are depicted in figure 1. The unstable phonons, which are used to predict the phase transition behaviors of the compounds, are characterized by negative values. Moreover, to distinguish the contribution of each atom to the normalized eigenvector of a dynamical matrix, the points of the phonon bands are assigned by different colors (red for oxygen, blue for titanium, and green for strontium/barium).

It has been confirmed experimentally that BaTiO₃ undergoes a phase transition sequence from cubic symmetry to tetragonal, orthorhombic, and finally rhombohedral structures with decreasing temperature [3]. These transitions are all related to the congelation of a polar mode at the Γ point of the Brillouin zone. The results presented in figure 1(a) confirm the FE instability of cubic BaTiO₃ ($a_0 = 4.01$ Å), and it can be noted that the most unstable phonon dominated by the Ti and O displacements (in red and blue) is located at Γ point. Besides the Γ_{15} phonon, however, the Ti-dominated unstable branches also extend to other highly symmetrical points of Brillouin zone. Because the ΓX , ΓM , and ΓR lines correspond to the [100], [110], and [111] directions, respectively, the flat dispersions of the unstable ΓX and ΓM branches accompanied by the rapid frequency increase from Γ to R points indicate that the structural instabilities of cubic BaTiO₃ are restricted to three quasi two-dimensional 'planes' of reciprocal space intersecting at the Γ point. This typical characteristic thus reflects the 'chainlike' unstable localized distortions in real space [17]. Except for the aforementioned negative phonons, all other phonons are stable. The calculated phonon dispersion band of cubic BaTiO₃ at the experimental lattice $(a_0 = 4.01 \text{ Å})$ is well consistent with previously

Table 2. Dielectric constants, equilibrium lattice constants, and Γ_{15} modes of cubic BaTiO₃ obtained by using different pseudopotentials and functionals.

Pseudopotential ^a		HGH			FHI	FHI		
Functional ^b	TP	PW92	PBE	TP	PW92	PBE	TP	
$ \begin{aligned} & \varepsilon_{\infty}^{c} \\ & a_{0} (\text{\AA})^{d} \\ & \Gamma_{15} \text{ mode } (\text{cm}^{-1})^{e} \end{aligned} $	7.06 3.96 -438	7.05 4.02 -438	6.86 4.02 -367	5.97 3.97 -162	5.97 4.02 -162	5.76 4.02 54	6.81 4.18 218	


^a Abbreviations for pseudopotentials: HGH, Hartwigsen–Goedeker–Hutter [39]; FHI, Fritz Haber Institute [29]; TM-NC, Troullier–Martins norm-conserving [28].

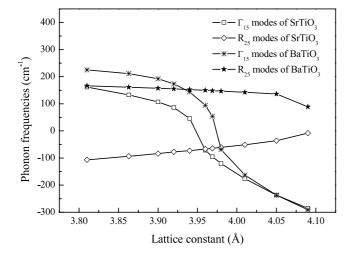
^b Abbreviation for functionals: TP, Teter–Pade [40]; PW92, Perdew–Wang 92 [30]; PBE, Perdew–Burke–Ernzerhof [41].

^c Theoretical optical dielectric constants obtained at the experimental lattice ($a_0 = 4.01$ Å).

^d Optimized lattice constants obtained by using different pseudopotentials and functionals.

^e Previous theoretical LDA and GGA values range from -72 to -219 cm⁻¹ [10].

Figure 1. Phonon dispersion bands of BaTiO₃ and SrTiO₃ at different lattice constants: (a) BaTiO₃ at 4.01 Å (b) BaTiO₃ at 3.90 Å (c) SrTiO₃ at 3.90 Å (d) SrTiO₃ at 4.01 Å. Colors are assigned to each point according to the contribution of each atom to the dynamical matrix eigenvector (red for oxygen, blue for titanium, and green for Sr/Ba).


(This figure is in colour only in the electronic version)

published predictions [17, 44]. Moreover, with decreasing volume ($a_0 = 3.90$ Å) it can be noted from figure 1(b) that all the unstable ferroelectric phonons of cubic BaTiO₃ disappear. The result above is well consistent with the experimental observation that BaTiO₃ loses ferroelectricity at high pressure [45].

Figure 1(c) shows the phonon dispersion band of cubic SrTiO₃ at the experimental lattice ($a_0 = 3.90$ Å). The computational results indicate that the most unstable phonon found at the R point is triply degenerate and contains only the displacements of O atoms (in red). Because the R_{25} mode eigenvector can be characterized by the opposite rotations of oxygen octahedra in adjacent cells [16], the congelation of the R_{25} phonon thus leads to a tetragonal $(I_{4/mcm})$ structure, agreeing quite well with experimental observations [2]. Except for the R_{25} mode, an unstable phonon was also found at the M point of the Brillouin zone. This phonon, labeled as M_3 , was reported to be temperature-independent through the AFD transition [16]. With the exception of the R_{25} and M_3 modes, no FE instabilities were found in cubic SrTiO₃ in the experimental lattice. The result is apparently different from previous theoretical investigations, in which an unstable Γ_{15} mode was found [16, 43]. According to experiments, the static dielectric response of SrTiO₃ above 50 K appears to obey the Curie-Weiss law, suggesting an impending FE transition at low temperatures [46]. However, SrTiO₃ does not turn into a FE phase but remains as a tetragonal $(I_{4/mcm})$ structure when the temperature approaches 0 K [46–48]. Further theoretical investigations also confirmed that the low temperature FE transition is completely suppressed because of so-called quantum paraelectric behavior [18, 49, 50].

Figure 1(d) depicts the phonon dispersion band of cubic SrTiO₃ at the experimental lattice of BaTiO₃ ($a_0 = 4.01$ Å). Because of the same lattice constant and symmetry, the Ti–O and A–O (A = Ba or Sr) distances in SrTiO₃ are equivalent with those of BaTiO₃. The differences in phonon bands thus reflect the changes of interaction caused by substitution. As can be seen from figures 1(a) and (d), an unstable R_{25} phonon appears along with the substitution of Ba by Sr, while the ΓX , ΓM , and XM unstable branches are almost identical in the two compounds. The results above suggest that the AFD instability is determined by the Sr–O interactions while the Ti–O interactions are crucial for the ΓX , ΓM , and XM unstable branches.

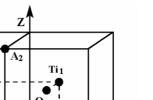

Since the unstable phonons are very important for elucidating the transition behaviors, we calculated the Γ_{15} and R_{25} modes of cubic SrTiO₃ and BaTiO₃ as a function of the lattice constant. As shown in figure 2, the Γ_{15} phonons in BaTiO₃ and SrTiO₃ keep the same variation trend and become unstable with increasing volume. The aforementioned trend is not only restricted to the present compounds but also appears in other perovskites. Samara and co-workers measured the pressure and temperature dependences of the dielectric properties of some antiferroelectric perovskites

Figure 2. Γ_{15} and R_{25} phonons (cm⁻¹) of BaTiO₃ and SrTiO₃ as function of lattice constant (Å).

 $(PbZrO_3, PbH_fO_3, and BaMnF_4)$ and confirmed that the FE transition temperature decreases with hydrostatic pressure [21, 22]. Moreover, Singh calculated the vibrational modes of KNbO₃ [23] while Fornari et al investigated the total energy dependence of rotational and ferroelectric lattice distortions in the $PbZr_xTi_{1-x}O_3$ system at different volumes [24]; both of their DFT results suggested that the Γ point instability is enhanced with increasing volume [23, 24]. However, the behaviors of the R_{25} modes in SrTiO₃ and BaTiO₃ are completely different. In SrTiO₃, the unstable R_{25} phonon gradually becomes soft with decreasing volume. The opposite volume (pressure) dependence of FE and AFD instabilities in SrTiO₃ is similar to those in PbZrO₃, PbH_fO_3 , BaMnF₄, and PbZr_xTi_{1-x}O₃ perovskites [21, 24], where the hydrostatic pressure can change the FE and AFE orderings in an opposite manner. But in BaTiO₃ no AFD instability can be found. The very different AFD behavior of BaTiO₃ compared with other perovskites seems related to its very large tolerance factor (1.0091 and 1.0706 for $SrTiO_3$ and $BaTiO_3$, respectively [51]), as emphasized by Ghita [20]. The results above are well consistent with previous experimental observations [2, 3, 21, 22] and theoretical predictions [23, 24, 52]. However, from a more fundamental viewpoint, the transition behavior of compounds is determined by the interactions of ionic pairs. Therefore, to figure out the origin of the different transition behaviors of cubic SrTiO₃ and BaTiO₃, further calculations concerning the interactions of each ionic pair are thus of primary importance (see section 3.3).

The discussions above concerning the FE and AFD behaviors of SrTiO₃ and BaTiO₃ were considered at low pressures (only 5% volume change). However, the perovskites may possess quite an unusual FE behavior at high pressure [53, 54]. From x-ray diffraction and high-pressure Raman scattering experiments, followed by some *ab initio* simulations, Kornev and co-workers confirmed that the ferroelectricity of PbTiO₃ disappears gradually with increasing pressure and then reappears as the pressure exceeds a critical point (above 30 GPa) [53]. Later, Bousquet and co-workers investigated the vibrational modes and interactions of

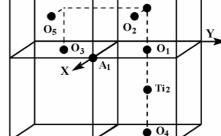


Figure 3. Three-dimensional view of atoms.

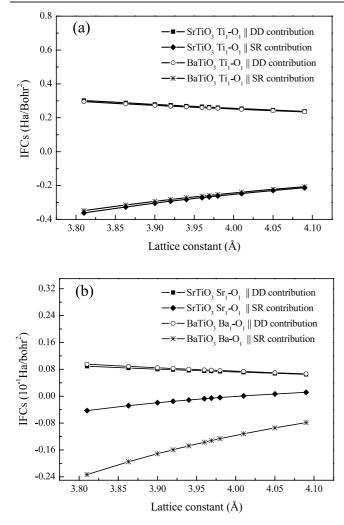
cubic BaTiO₃ under hydrostatic pressures by first-principles calculations and also found that the FE instability of cubic BaTiO₃ reappears at about 140 GPa [54]. The abnormal behavior above cannot be observed in figure 1 because the volume compression in the present calculation (below 30 GPa) is not sufficiently large. However, our computations indicated at least that the low-pressure FE behaviors of SrTiO₃ and BaTiO₃ are quite consistent with previous results [53, 54]. In consideration of these facts, in next section we restrict ourselves to the changing interaction of each ionic pair at low pressure.

3.3. Origin of different transition behaviors of $BaTiO_3$ and $SrTiO_3$

In the sections above, some comparisons on the basis of the phonon bands between cubic $SrTiO_3$ and $BaTiO_3$ were made. In this section, the real-space IFCs, which are decomposed into a long-range DD part and a SR part according to [17] and [34], are employed to investigate the origin of their different transition behaviors. For convenience, the atoms are labeled according to figure 3 and the IFCs are reported either in Cartesian coordinates or in terms of the longitudinal (||) and transverse (\perp) contributions along the line connecting the two atoms.

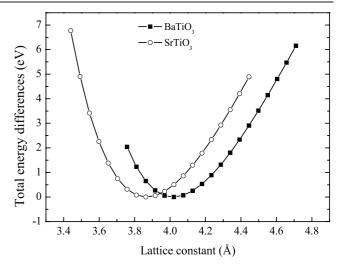
Table 3 lists the calculated IFCs of different ionic pairs of BaTiO₃ and SrTiO₃. For BaTiO₃, it has been confirmed that the unstable eigenvectors of the Γ_{15} phonon and the branches emanating from the Γ point are mainly dominated by Ti displacements along the Ti-O-Ti chain [7, 9, 17]. If only Ti atoms are allowed to be displaced, the energetics of the Ti-only displacement are thus determined by Ti selfforce constant, Ti_1-Ti_2 longitudinal (||) and transverse (\perp) interactions. Our calculations indicate that the total Ti1-Ti2 longitudinal (||) interaction (-0.067) can compensate most of the Ti self-force constant (+0.1586), while the total Ti₁-Ti₂ transverse (\perp) interaction (+0.006) is very small. The abovecalculated values are very similar to those of Ghosez, who suggested that the comparatively small Ti_1-Ti_2 transverse (\perp) interaction can directly account for the flat dispersion of the unstable ΓX and ΓM branches and the strong stiffening of the

		BaTiO ₃ (4.01 Å)			SrTiO ₃ (4.01 Å)			SrTiO ₃ (3.90 Å)		
Atom pair		Total	DD	SR	Total	DD	SR	Total	DD	SR
Ti ₁ –O ₁		+0.011	+0.250	-0.239	+0.007	+0.254	-0.247	-0.025	+0.279	-0.304
	Ĩ	-0.023	-0.042	+0.019	-0.023	-0.042	+0.018	-0.022	-0.047	+0.025
$Ti_1 - O_4$		+0.009	+0.009	0.000	+0.009	+0.009	0.000	+0.010	+0.010	0.000
	\perp	-0.002	-0.002	0.000	-0.002	-0.002	0.000	-0.002	-0.002	0.000
Ti ₁ -Ti ₂		-0.067	-0.039	-0.028	-0.067	-0.040	-0.027	-0.074	-0.044	-0.030
	\perp	+0.006	+0.020	-0.013	+0.007	+0.020	-0.014	+0.007	+0.022	-0.015
$A_1 - A_2$		-0.009	-0.004	-0.005	-0.008	-0.004	-0.004	-0.009	-0.005	-0.004
	Ï.	+0.003	+0.002	+0.001	+0.003	+0.002	+0.001	+0.003	+0.002	+0.001
$A_1 - O_1$		-0.004	+0.007	-0.011	+0.007	+0.007	0.000	+0.006	+0.008	-0.002
	zz	-0.011	-0.015	+0.004	-0.011	-0.014	+0.003	-0.012	-0.016	+0.004
A ₁ -Ti ₁	xx	+0.000	+0.000	-0.000	+0.000	+0.000	+0.000	+0.000	+0.000	+0.000
	xy	+0.012	+0.010	+0.002	+0.011	+0.010	+0.001	+0.013	+0.011	+0.020
	xz	+0.012	+0.010	+0.002	+0.011	+0.010	+0.001	+0.013	+0.011	+0.020


Table 3. Longitudinal (\parallel), transverse (\perp), and Cartesian IFCs (hartree/bohr²) between different pairs of atoms.

unstable ΓR branch [17]. However, for the true eigenvector, the contributions from the cooperative displacements are far from negligible. As can be noted from table 3, the largest DD (+0.250) and SR (-0.239) couplings are found in the longitudinal (||) interactions of the Ti_1-O_1 pair. Because longrange characteristics predominate over the Ti₁–O₁ longitudinal (||) interaction, the cooperative displacements of O_1 against Ti₁ along the Ti–O bond thus lead to a FE instability. This trend also provides an example of the very delicate nature of the compensation between DD and SR forces, as pointed out previously for BaTiO₃ [8, 55]. Besides the Ti₁–O₁ longitudinal (||) interaction, the destabilizing nature of the Ti_{1-} O₄ longitudinal (||) interaction also plays an important role in the FE instability. Together with the total contributions of the rest of the IFCs, the lattice dynamics and phase transition behaviors of cubic BaTiO₃ are thus determined.

For SrTiO₃ at expanded volume ($a_0 = 4.01$ Å), the Ti₁– Ti₂ longitudinal (||) and transverse (\perp) interactions are almost the same as those in BaTiO₃. Also, the total longitudinal (||) and transverse (\perp) interactions of the A₁-A₂, A₁-Ti₁, and Ti1-O pairs were found to be very similar in the two compounds (table 3). The results confirm that the interactions above are responsible for the similar FE transition behaviors of BaTiO₃ and SrTiO₃. However, for the AFD phonons, the frequencies depend on the oxygen-related IFCs, selfforce constants of oxygen, and off-diagonal couplings between neighboring O atoms. The present calculations suggest that at the same lattice constant the off-diagonal couplings of the O1-O2, O1-O3, O1-O4, or O1-O5 pairs of cubic BaTiO3 and SrTiO₃ are remarkably similar to each other. The same conclusions can also be found in the cases of BaTiO₃, PbTiO₃, and PbZrO₃ [17]. Moreover, to identify which IFC is responsible for AFD instabilities, Ghosez and co-workers have artificially replaced the IFC between A1 and O1 atoms of BaTiO₃ by the values of PbTiO₃ and found that the R_{25} mode decreases from 125 to -40 cm^{-1} [17]. Furthermore, they also confirmed that the stronger A1-O1 interaction leads to a more unstable R_{25} mode [17]. Therefore, the effect of the A_1 – O_1 interactions on AFD instability is confirmed. As shown in table 3, the A_1 - O_1 interactions are indeed changed when Ba is substituted by Sr. The Ba– O_1 longitudinal (||)


interaction is repulsive (-0.004), while the Sr-O₁ longitudinal (\parallel) interaction (+0.007) possesses a long-range characteristic. Owing to the coordination number between Sr and O atoms $(+0.007 \times 12)$, the AFD instability is further reinforced. Although the change of the A₁–O₁ interaction can lead to a different AFD behavior, the role of the A-O interaction in SrTiO₃ is particularly different from other perovskites. On the basis of the first-principles calculations, Ghosez and coworkers investigated the lattice dynamics of BaTiO₃, PbTiO₃, and PbZrO₃ and confirmed that the covalent characteristics of Pb–O bonding result in a much larger BEC for Pb (+3.87) and a stronger A-O DD coupling (DD part of the A-O₁ longitudinal (\parallel) interaction, +0.016), which ultimately affect the transition behaviors (both FE and AFD instabilities) of BaTiO₃, PbTiO₃, and PbZrO₃ [17]. But for SrTiO₃, it can be noted from tables 1 and 2 that the long-range DD couplings of all ionic pairs as well as the BEC of atom A in SrTiO₃ are quite similar to those of BaTiO₃, suggesting that at the same lattice volume the polarization of the system is hardly affected by the substitution. Moreover, as already identified in figures 1(a) and (d), the contributions of Sr/Ba displacements to the unstable FE phonon branches are nearly identical. In consideration of similar valence configurations, 5s²5p⁶6s² for Ba and $4s^24p^65s^2$ for Sr, the covalent effect of A–O bond on the lattice dynamics of BaTiO₃ and SrTiO₃ is thus exclusive. Furthermore, it can be confirmed that the different A_1-O_1 longitudinal (||) interactions of BaTiO₃ and SrTiO₃ are due to the SR coupling (table 3) but not the DD part. Because the SR repulsion (-0.011) of the A_1 - O_1 longitudinal (||) interaction in $BaTiO_3$ is much stronger than that (0.000) in SrTiO₃, consistent with the larger ionic radius of Ba (1.61 Å) than Sr (1.44 Å) [56], it can be deduced that the ionic radius of atom A is very crucial for the different AFD behaviors of $ATiO_3$ (A = Ba, Sr) perovskites.

The IFCs of SrTiO₃ at the experimental lattice ($a_0 = 3.90$ Å) presented in table 3 indicate that the Ti₁–O₁ longitudinal (||) interaction (-0.025) is changed and becomes repulsive with decreasing volume while other IFCs are rather insensitive to lattice change. As the destabilizing nature of the Ti₁–O₄ longitudinal (||) interaction (+0.010) is no longer sufficient to compensate the Ti₁–O₁ repulsion, the FE

Figure 4. Key IFCs (Ha/Bohr²) for BaTiO₃ and SrTiO₃ as a function of lattice constant (Å).

instabilities thus disappear. To identify the effect of change of crystal volume on lattice dynamics, we calculated the IFCs of BaTiO₃ and SrTiO₃ at a number of volumes. The key IFCs as a function of lattice constant are depicted in figure 4. It can be found from figure 4(a) that the long-range DD interactions or SR repulsions of the Ti₁-O₁ pairs of BaTiO₃ and SrTiO₃ are very close to each other. With decreasing volume, the SR repulsion gradually becomes dominant over the long-range interaction, leading to a stiffening of the Γ_{15} phonon and the disappearance of the FE instabilities. These results agree quite well with the trend of the Γ_{15} modes of BaTiO₃ and SrTiO₃ observed in figure 2 and tie in with previous theoretical predictions that increasing crystal volume can enhance FE instability [7, 11, 23]. Figure 4(b) shows the DD and SR interactions of the A1-O1 pairs of BaTiO3 and SrTiO3. At the same crystal volume, the long-range interactions in the two compounds are very similar to each other, being consistent with the calculated BECs of the two compounds. For BaTiO₃, the magnitude of the SR repulsion is much larger than the longrange DD interaction, and therefore no AFD instability can be produced. However, owing to the smaller ionic radius of Sr relative to Ba, the repulsion between Sr and O atoms is

Figure 5. Total energy differences (eV) as a function of lattice constant (Å) in BaTiO₃ and SrTiO₃. The energy zero points are taken from the total energies of corresponding equilibrium configurations.

significantly weakened, and the long-range characteristic of the Sr–O pair thus leads to an AFD R_{25} phonon of SrTiO₃.

Beside the A-O interactions, the different ionic radii of Sr and Ba can also result in different ground-state configurations. Figure 5 depicts the total energies of cubic BaTiO₃ and SrTiO₃ as function of lattice constant. The equilibrium lattice constants of BaTiO₃ and SrTiO₃ are optimized to be 4.02 Å and 3.86 Å, respectively, being in good agreement with the experimental values [9]. As shown in figure 5, when the lattice constant deceases from 4.02 to 3.86 Å, the total energy of BaTiO₃ gradually increases. This is opposite to the case in SrTiO₃. The different total energy dependence of volume can be attributed to the interactions of the A-O and Ti-O pairs. For BaTiO₃, the repulsions of both the Ti–O and Ba–O pairs are enhanced with decreasing volume, being consistent with the increase in total energy. However, for SrTiO₃ the interactions of the Sr-O pairs are attractive, and the increasing repulsion between Ti and O atoms with decreasing volume (from 4.02 to 3.86 Å) does not lead to an increase of total energy owing to the compensated Sr-O interaction. As a result, the lattice constant of SrTiO₃ can be significantly reduced, which distinguishes the FE behavior of SrTiO₃ from BaTiO₃. As a result, it can be concluded that the smaller ionic radius of Sr compared with Ba, which essentially leads to different SR couplings of A-O pairs, is not only crucial for the very different AFD behaviors but also for the different lattice constants of the two compounds. The substitution and different lattice constants make the transition behaviors of the two compounds entirely different.

4. Conclusions

Using first-principles DFT calculations, we have systematically investigated the lattice dynamics of cubic BaTiO₃ and SrTiO₃ as a function of crystal volume. The phonon dispersion relations of the two compounds identify their different phase transition behaviors. From real-space analysis, it can be found that these differences can be elucidated by a few key IFCs. First, the Ti–O interaction is very crucial for the FE Γ_{15} modes and unstable phonon branches emanating from the Γ point. As the lattice constant decreases, the repulsion of the Ti-O pair becomes dominant over the Ti-O interaction, which results in the disappearance of the FE instabilities. Second, the A–O interactions in the two compounds are very different. For SrTiO₃, the Sr–O interaction is governed by long-range characteristics. However, for BaTiO₃, the Ba-O interaction is repulsive. The different A-O interactions result in a very different AFD behavior. Different from PbTiO₃ and PbZrO₃, the appearance of the AFD R_{25} mode in SrTiO₃ does not originate from the characteristics of the covalent bonding between A and O atoms but relates to the A-O SR coupling. Because the A-O SR couplings are closely related to ionic radius, it can be confirmed that the smaller ionic radius of Sr (1.44 Å) relative to Ba (1.61 Å) is crucial for the very different AFD behaviors of BaTiO₃ and SrTiO₃. Finally, owing to the compensated Sr-O interaction, the increasing repulsion between Ti and O atoms of SrTiO₃ with decreasing volume (from 4.02 to 3.86 Å) does not result in an increase in total energy. Therefore, the lattice constant of SrTiO₃ can be significantly reduced, which results in the different FE behaviors of the two compounds. The substitution and difference in crystal volume make the phase transitions of the two compounds entirely different.

Acknowledgments

This work was supported by the Key Program Projects of National Natural Science Foundation of China (20431030), National Natural Science Foundation of China (20671032), and Program for New Century Excellent Talents in University of China (NCET-04-0341).

References

- [1] Lines M E and Glass A M 1977 Principles and Applications of Ferroelectrics and Related Materials (Oxford: Clarendon)
- [2] Fleury P A, Scott J F and Worlock J M 1968 *Phys. Rev. Lett.*21 16
- [3] Perry C H and Hall D B 1965 Phys. Rev. Lett. 15 700
- [4] Cardona M 1965 Phys. Rev. 140 A651
- [5] Vogt H 1995 Phys. Rev. B 51 8046
- [6] DiDomenico M, Porto S P S and Wemple S H 1967 *Phys. Rev. Lett.* 19 855
- [7] Cohen R E and Krakauer H 1990 Phys. Rev. B 42 6416
- [8] Cohen R E 1992 *Nature* **358** 136
- [9] King-Smith R D and Vanderbilt D 1994 Phys. Rev. B 49 5828
- [10] Chen Z X, Chen Y and Jiang Y S 2001 J. Phys. Chem. B 105 5766
- [11] Zhong W and Vanderbilt D 1995 Phys. Rev. Lett. 74 2587
- [12] Zhong W, Vanderbilt D and Rabe K M 1994 *Phys. Rev. Lett.* 73 1861
- [13] Zhong W, Vanderbilt D and Rabe K M 1995 *Phys. Rev.* B 52 6301
- [14] Rabe K M and Wagmare U V 1996 J. Phys. Chem. Solids 57 1397
- [15] Baroni S, de Gironcoli S, Corso A D and Giannozzi P 2001 *Rev. Mod. Phys.* 73 515
- [16] Lasota C, Wang C Z, Yu R and Krakauer H 1997 Ferroelectrics 194 109

- [17] Ghosez Ph, Cockayne E, Waghmare U V and Rabe K M 1999 Phys. Rev. B 60 836
- [18] Trautmann Th and Falter C 2004 J. Phys.: Condens. Matter 16 5955
- [19] Piskunov S, Heifets E, Eglitis R I and Borstel G 2004 Comput. Mater. Sci. 29 165
- [20] Ghita M, Fornari M, Singh D J and Halilov S V 2005 Phys. Rev. B 72 054114
- [21] Samara G A 1970 Phys. Rev. B **1** 3777
- [22] Samara G A, Sakudo T and Yoshimitsu K 1975 Phys. Rev. Lett. 35 1767
- [23] Singh D J and Boyer L L 1992 Ferroelectrics 136 95
- [24] Fornari M and Singh D J 2001 Phys. Rev. B 63 092101
- [25] Hohenberg P and Kohn W 1964 *Phys. Rev.* **136** B864
- [26] Gonze X, Beuken J M, Caracas R, Detraux F, Fuchs M, Rignanese G M, Sindic L, Verstraete M, Zerah G, Jollet F, Torrent M, Roy A, Mikami M, Ghosez Ph, Raty J Y and Allan D C 2002 Comput. Mater. Sci. 25 478
- [27] Gonze X, Rignanese G M, Verstraete M, Beuken J M, Pouillon Y, Caracas R, Jollet F, Torrent M, Zerah G, Mikami M, Ghosez Ph, Veithen M, Raty J Y, Olevano V, Bruneval F, Reining L, Godby R, Onida G, Hamman D R and Allan D C 2005 Z. Kristallogr. 220 558
- [28] Troullier N and Martins J L 1991 Phys. Rev. B 43 1993
- [29] Fuchs M and Scheffler M 1999 Comput. Phys. Commun. 119 67
- [30] Perdew J P and Wang Y 1992 *Phys. Rev.* B **45** 13244
- [31] Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566
- [32] Gonze X 1996 Phys. Rev. B 54 4383
- [33] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
- [34] Gonze X, Charlier J C, Allan D C and Teter M P 1994 Phys. Rev. B 50 13035
- [35] Giannozzi P, de Gironcoli S, Pavone P and Baroni S 1991 Phys. Rev. B 43 7231
- [36] Dore P, Paolone A and Trippetti R 1996 J. Appl. Phys. 80 5270
- [37] Burns G and Dacol F H 1982 Solid State Commun. 42 9
- [38] Gonze X, Ghosez Ph and Godby R W 1995 Phys. Rev. Lett. 74 4035
- [39] Hartwigsen C, Goedecker S and Hutter J 1998 Phys. Rev. B 58 3641
- [40] Goedecker S, Teter M and Huetter J 1996 *Phys. Rev.* B **54** 1703
- [41] Perdew J P, Burke K and Ernzerhof M 1996 *Phys. Rev. Lett.* 77 3865
- [42] Ghosez Ph, Michenaud J P and Gonze X 1998 Phys. Rev. B 58 6224
- [43] Zhong W, King-Smith R D and Vanderbilt D 1994 Phys. Rev. Lett. 72 3618
- [44] Ghosez Ph, Gonze X and Michenaud J P 1998 Ferroelectrics 206 205
- [45] Decker D L and Zhao Y X 1989 *Phys. Rev.* B **39** 2432
- [46] Viana R, Lunkenheimer P, Hemberger J, Böhmer R and Loidl A 1994 Phys. Rev. B 50 601
- [47] Sakudo T and Unoki H 1971 Phys. Rev. Lett. 26 851
- [48] Müller K A and Burkard H 1979 Phys. Rev. B 19 3593
- [49] Martoňák R and Tosatti E 1994 Phys. Rev. B 49 12596
- [50] Zhong W and Vanderbilt D 1996 Phys. Rev. B 53 5047
- [51] Goudochnikov P and Bell A J 2007 J. Phys.: Condens. Matter 19 176201
- [52] Xie Y, Fu H G, Yu H T, Zhang G X and Sun J Z 2007 J. Phys.: Condens. Matter 19 506213
- [53] Kornev I A, Bellaiche L, Bouvier P, Janolin P E, Dkhil B and Kreisel J 2005 Phys. Rev. Lett. 95 196804
- [54] Bousquet E and Ghosez Ph 2006 Phys. Rev. B 74 180101
- [55] Ghosez Ph, Gonze X and Michenaud J P 1996 Europhys. Lett. 33 713
- [56] Lide D R 2003 CRC Handbook of Chemistry and Physics 84th edn (Boca Raton, FL: CRC Press) p 1959